Adaptation of the ACO Heuristic for Sequencing Learning Activities
نویسندگان
چکیده
This paper describes an initiative aimed at adapting swarm intelligence techniques (in particular, Ant Colony Optimization) to an e-learning environment, thanks to the fact that the available online material can be organized in a graph by means of hyperlinks of educational topics. In this case, the agents that move on the graph are students who unconsciously leave pheromones in the environment depending on their success or failure. In the paper, the whole process is referred as man-hill, as opposed to the ant-hill metaphor of ACO. The paper presents the system and shows the experimental results obtained. The results show that the approach is a sensible option and provide several hints for future improvement of the system.
منابع مشابه
Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملAnt colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints
a r t i c l e i n f o Keywords: Multi-mode scheduling Ant colony optimization Renewable and nonrenewable resource constraints Construction projects An ant colony optimization (ACO)-based methodology for solving the multi-mode resource-constrained project scheduling problem (MRCPSP) considering both renewable and nonrenewable resources is presented. With regard to the MRCPSP solution consisting ...
متن کاملTwo meta-heuristic algorithms for parallel machines scheduling problem with past-sequence-dependent setup times and effects of deterioration and learning
This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machin...
متن کاملOperation Sequencing Optimization in CAPP Using Hybrid Teaching-Learning Based Optimization (HTLBO)
Computer-aided process planning (CAPP) is an essential component in linking computer-aided design (CAD) and computer-aided manufacturing (CAM). Operation sequencing in CAPP is an essential activity. Each sequence of production operations which is produced in a process plan cannot be the best possible sequence every time in a changing production environment. As the complexity of the product incr...
متن کامل